澳门6合彩开奖

伍慧玲

发布时间:2025-03-02浏览次数:416



姓名:伍慧玲

职称:副教授

学历:博士研究生

电子邮箱:huilingwu@mac6hckj.com



教育经历:

2013.9-2018.6  福建师范大学基础数学专业  博士研究生

2007.9- 2010.4  福州大学应用数学专业  硕士研究生

2003.9-2007.7  福州大学数学与应用数学专业  本科



工作经历:

2018-08 至今, 闽江学院, 澳门6合彩开奖 , 教师

2010-8至 2018-07, 福建农林大学, 金山学院, 教师



研究方向:

非线性分析



主持项目:

福建省科技厅青年项目   非线性Choquard方程解的相关问题(2021J05206))  主持  2021-2024

国家自然科学基金青年项目  几类Choquard型方程解的相关问题研究(No. 12301135) 2024-2026



科研成果:

论文

[1] Huiling Wu, Yongqing Li. Ground state for a coupled elliptic system with critical growth. Adv. Non. Studies 18 (1) (2018) 1-15.

[2] Huiling Wu, Jianqing Chen, Yongqing Li. Existence of positive solutions to a linearly coupled Schrödinger system with critical exponent. Commun. Contemp. Math. 20 (7) (2018) 175008.

[3] Huiling Wu. Multiple solutions to a linearly coupled elliptic system with critical exponents. J. Math. Anal. Appl. 480 (2019) 123380.

[4] Huiling Wu. Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents.Boundary value problems.2021 (2021) 13.

[5]Huiling Wu.  Vector Solutions for Linearly Coupled Choquard Type Equations with Lower Critical Exponents. Advances in Mathematical Physics.2020.

[6]Huiling Wu. Existence and concentration of ground states to a critical

Choquard-type equation involving steep potential well. Mathematical methods in the applied science (2021)1-13.

Huiling Wu, Haiping Xu. On a class of  Choquard-Type equation with upper critical exponent and indefinite linear  part.Journal of Applied Analysis and Computation. 12(2) 2022, 464–478.

Huiling Wu.Multiple nodal and semi-nodal solutions to a nonlinear Choquard-type system. J. Math. Anal. Appl. 514(1) (2022)126360.



主讲课程:

《微积分》《高等数学》《数学分析》